MATHEMATICAL PHYSICS UNIT-5 FOURIER TRANSFORMS AND APPLICATION

DR. RAJESH MATHPAL ACADEMIC CONSULTANT SCHOOL OF SCIENCES

UTTARAKHAND OPEN UNIVERSITY
TEENPANI, HALDWANI
UTTRAKHAND
MOB:9758417736,7983713112
Email: rmathpal@uou.ac.in

STRUCTURE OF UNIT

5.1 Introduction
5.2 Objectives
5.3 Fourier Series
5.4 Some Important Results
5.5 Fourier Integral
5.6 Fourier Integral Theorem
5.7 Fourier Sine and Cosine Integrals
5.8 Fourier's Complex Integrals
5.9 Fourier Transforms:
5.10 Fourier Sine Transforms
5.11 Fourier Cosine Transform

5.12 Properties of Fourier Transforms

5.12.1 Linear Property
5.12.2. Change of Scale Property
5.12.3 Shifting Property
5.13 Fourier Transform of Derivatives
5.14 Fourier Transform of Partial Derivative of a Function
5.18 Terminal Questions
5.19 Terminal Questions Answers

5.1 INTRODUCTION

- The central starting point of Fourier analysis is Fourier series. They are infinite series designed to represent general periodic functions in terms of simple ones, namely, cosines and sines.
- This trigonometric system is orthogonal, allowing the computation of the coefficients of the Fourier series by use of the well-known Euler formulas, as shown. Fourier series are very important to the engineer and physicist because they allow the solution of linear differential equations and partial differential.
- Fourier series are, in a certain sense, more universal than the familiar Taylor series in calculus because many discontinuous periodic functions that come up in applications can be developed in Fourier series but do not have Taylor series expansions.
- The Fourier Transform is a tool that breaks a waveform (a function or signal) into an alternate representation, characterized by sine and cosines. The Fourier Transform shows that any waveform can be rewritten as the sum of sinusoidal functions.
- The Fourier transform is a mathematical function that decomposes a waveform, which is a function of time, into the frequencies that make it up. The result produced by the Fourier transform is a complex valued function of frequency.
- The absolute value of the Fourier transform represents the frequency value present in the original function and its complex argument represents the phase offset of the basic sinusoidal in that frequency.
- The Fourier transform is also called a generalization of the Fourier series. This term can also be applied to both the frequency domain representation and the mathematical function used.
- The Fourier transform helps in extending the Fourier series to nonperiodic functions, which allows viewing any function as a sum of simple sinusoids.

5.2 OBJECTIVES

- After studying this chapter we will learn about how Fourier transforms is useful many physical applications, such as partial differential equations and heat transfer equations.
- With the use of different properties of Fourier transform along with Fourier sine transform and Fourier cosine transform, one can solve many important problems of physics with very simple way.
- Thus we will learn from this unit to use the Fourier transform for solving many physical application related partial differential equations.

5.3 FOURIER SERIES

- A function $f(x)$ is called a periodic function if $f(x)$ is defined for all real x, except possibly at some points, and if there is some positive number p, called a period of $f(x)$ such that

$$
f(x+p)=f(x) \quad \text { for all } x
$$

- Familiar periodic functions are the cosine, sine, tangent, and cotangent. Examples of functions that are not periodic are $x, x^{2}, x^{3}, e^{x}, \cos h x$ etc. to mention just a few.
If $f(x)$ has a period of p then it has also a period of $2 p$

$$
f(x+2 p)=f\{(x+p)+p\}=f(x+p)=f(x)
$$

Or in general we can write

$$
f(x+n p)=f(x)
$$

- A Fourier series is defined as an expansion of a real function or representation of a real function in a series of sines and cosines such as

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

Where a_{0}, a_{n}, and b_{n} are constants, called the Fourier coefficients of the series. We see that each term has the period of 2π Hence if the coefficients are such that the series converges, its sum will be a function of period 2π.

- The Fourier coefficients of $f(x)$, given by the Euler formulas

$$
\begin{array}{rlr}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x & \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x & n=1,2,3, \ldots \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x & n=1,2,3, \ldots
\end{array}
$$

The above Fourier series is given for period 2π. The transition from period 2π to be period $p=2 L$ is effected by a suitable change of scale, as follows. Let $f(x)$ have period $=2 L$. Then we can introduce a new variable v such that, $f(x)$ as a function of v, has period 2π.

- If we set

$$
x=\frac{p}{2 \pi} v \Rightarrow v=\frac{2 \pi}{p} x \Rightarrow v=\frac{\pi}{L} x
$$

This means $v= \pm \pi$ corresponds to $x= \pm L$. This represent f, as function of v has a period of 2π. Hence the Fourier series is

$$
f(v)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n v+\sum_{n=1}^{\infty} b_{n} \sin n v
$$

- Now using $v=\frac{\pi}{L} x$ Fourier series for the period of $(-L, L)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \frac{\pi}{L} x+\sum_{n=1}^{\infty} b_{n} \sin n \frac{\pi}{L} x
$$

This is Fourier series we obtain for a function of $f(x)$ period $2 L$ the Fourier series.
The coefficient is given by

$$
\begin{aligned}
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(t) d t \\
& \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x,
\end{aligned}
$$

- $b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x$,

5.4 SOME IMPORTANT RESULTS

- $\int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x$
- $\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x$
- $\int_{0}^{\infty} \frac{\sin a x}{x} d x=\frac{\pi}{2}$
- $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
- $\int_{-\infty}^{\infty} \frac{\sin m x}{(x-b)^{2}+a^{2}} d x=\frac{\pi}{a} e^{-a m} \sin b m, \quad[m>0]$

5.5 FOURIER INTEGRAL

- Fourier series are powerful tools for problems involving functions that are periodic or are of interest on a finite interval only.
- Since, of course, many problems involve functions that are nonperiodic and are of interest on the whole x-axis, we ask what can be done to extend the method of Fourier series to such functions. This idea will lead to "Fourier integrals."

5.6 FOURIER INTEGRAL THEOREM

Fourier integral theorem states that $f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos u(t-x) d t d u$
Proof. We know that Fourier series of a function $f(x)$ in $(-c, c)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{c}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{c}
$$

Where a_{0}, a_{n} and b_{n} are given by

$$
\begin{aligned}
& a_{0}=\frac{1}{c} \int_{-c}^{c} f(t) d t \\
& a_{n}=\frac{1}{c} \int_{-\varepsilon}^{c} f(t) \cos \frac{n \pi t}{c} d t \\
& b_{n}=\frac{1}{c} \int_{-c}^{\varepsilon} f(t) \sin \frac{n \pi t}{c} d t
\end{aligned}
$$

Substituting the values of a_{∞}, a_{n} and b_{n} in above equation, we get

$$
f(x)=\frac{1}{2 c} \int_{-c}^{c} f(t) d t+\sum_{n=1}^{\infty} \frac{1}{c} \int_{-c}^{c} f(t) \cos \frac{n \pi t}{c} d t \cos \frac{n \pi x}{c}+\sum_{n=1}^{\infty} \frac{1}{c} \int_{-c}^{c} f(t) \sin \frac{n \pi t}{c} d t, \sin \frac{n \pi x}{c}
$$

$$
\begin{gathered}
f(x)=\frac{1}{2 c} \int_{-c}^{c} f(t) d t+\sum_{n=1}^{\infty} \frac{1}{c} \int_{-c}^{c} f(t)\left[\cos \frac{n \pi t}{c} \cos \frac{n \pi x}{c}+\sin \frac{n \pi t}{c} \sin \frac{n \pi x}{c}\right] d t \\
f(x)=\frac{1}{2 c} \int_{-c}^{c} f(t) d t+\sum_{n=1}^{\infty} \frac{1}{c} \int_{-c}^{c} f(t)\left[\cos \left(\frac{n \pi t}{c}-\frac{n \pi x}{c}\right)\right] d t \\
f(x)=\frac{1}{2 c} \int_{-c}^{c} f(t) d t+\sum_{n=1}^{c} \frac{1}{c} \int_{-c}^{c} f(t)\left[\cos \frac{n \pi}{c}(t-x)\right] d t \\
f(x)=\frac{1}{2 c} \int_{-c}^{c} f(t)\left\{1+2 \sum_{n=1}^{\infty} \cos \frac{n \pi}{c}(t-x)\right\} d t
\end{gathered}
$$

Since cosine functions are even functions i.e., $\cos (-\theta)=\cos \theta$ the expression

$$
\left\{1+2 \sum_{n=1}^{\infty} \cos \frac{n \pi}{c}(t-x)\right\}=\sum_{n=-\infty}^{\infty} \cos \frac{n \pi}{c}(t-x)
$$

We now let the parameter c approach infinity, transforming the finite interval $[-c, c]$ into the infinite interval $(-\infty$ to $+\infty)$. We set

$$
\frac{n \pi}{c}=\omega, \text { and } \frac{\pi}{c}=d \omega \quad \text { with } c \rightarrow \infty
$$

Then we have

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t)\left\{\int_{-\infty}^{\infty} d \omega \cos \omega(t-x)\right\} d t
$$

On simplifying

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \omega(t-x) d \omega d t \quad \text { Proved }
$$

5.7. FOURIER SINE AND COSINE INTEGRALS

$$
\begin{aligned}
& f(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin \omega x d u \int_{0}^{\infty} f(t) \sin \omega t d t \quad \text { (Fourier Sine Integrals) } \\
& f(x)=\frac{2}{\pi} \int_{0}^{\infty} \cos \omega x d u \int_{0}^{\infty} f(t) \cos \omega t d t \quad \text { (Fourier Cosine Integrals) }
\end{aligned}
$$

Proof: We can write

$$
\cos \omega(t-x)=\cos (\omega t-\omega x)=\cos \omega t \cos \omega x+\sin \omega t \sin \omega x
$$

Using this expansion in Fourier integral theorem, we have

$$
\begin{gathered}
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} \cos \omega(t-x) d \omega d t \\
\Rightarrow f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t)(\cos \omega t \cos \omega x+\sin \omega t \sin \omega x) d \omega d t \\
\Rightarrow f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t)\left(\cos \omega t \cos \omega x d \omega d t+\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \sin \omega t \sin \omega x d \omega d t\right.
\end{gathered}
$$

Now to solve the above equation, we have two different cases, using the following conditions

$$
\int_{-a}^{a} f(x) d x=0 \quad \text { for odd function }
$$

And

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \quad \text { for even function }
$$

Case I: when $f(t)$ is even function: this means

$$
\begin{aligned}
& \Rightarrow f(t) \sin \omega t \quad \text { is odd function and } \\
& f(t) \cos \omega t \quad \text { is even function }
\end{aligned}
$$

Hence

$$
\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \sin \omega t \sin \omega x d \omega d t=0
$$

And

$$
\begin{gathered}
\Rightarrow f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t)\left(\cos \omega t \cos \omega x d \omega d t=\frac{2}{\pi} \int_{0}^{\infty} \cos \omega x d \omega \int_{-\infty}^{\infty} f(t) \cos \omega t d t\right. \\
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \cos \omega x d u \int_{0}^{\infty} f(t) \cos \omega t d t
\end{gathered}
$$

This is known as Fourier cosine integral.

Case II: If $f(t)$ is odd function: this means

$$
\Rightarrow f(t) \sin \omega t \quad \text { is even function and }
$$

$$
f(t) \cos \omega t \quad \text { is odd function }
$$

Hence

$$
\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \omega t \cos \omega x d \omega d t=0
$$

And
$\Rightarrow f(x)$
$=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \sin \omega t \sin \omega x d \omega d t=\frac{2}{\pi} \int_{0_{\infty}}^{\infty} \sin \omega x d \omega \int_{-\infty}^{\infty}$
$f(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin \omega x d u \int_{0}^{\infty} f(t) \sin \omega t d t$
This is known as Fourier sine integral.

5.8. FOURIER'S COMPLEX INTEGRALS

We know from Fourier integral theorem

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \omega(t-x) d \omega d t
$$

Now adding

$$
f(x)=\frac{i}{2 \pi} \int_{-\infty}^{\infty} f(t) d t \int_{-\infty}^{\infty} \sin \omega(t-x) d \omega=0
$$

Since

$$
\int_{-\infty}^{\infty} \sin \omega(t-x) d \omega=0 \quad \text { because of odd function }
$$

$$
\begin{aligned}
& \text { Hence } \\
& \qquad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \omega(t-x) d \omega d t+\frac{i}{2 \pi} \int_{-\infty}^{\infty} f(t) d t \int_{-\infty}^{\infty} \sin \omega(t-x) d \omega \\
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) d t\left[\int_{-\infty}^{\infty} \cos \omega(t-x)+i \sin \omega(t-x)\right] d \omega \\
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) d t\left[\int_{-\infty}^{\infty} e^{i \omega(t-x)}\right] d \omega
\end{aligned}
$$

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \omega x} d \omega \int_{-\infty}^{\infty} f(t) e^{i \omega t} d t
$$

This relation is known as Fourier's complex Integral.

Example 1. Express the following function

$$
f(x)= \begin{cases}1 & \text { when } x \leq 1 \\ 0 & \text { when } x>1\end{cases}
$$

as a Fourier integral. Hence evaluate

$$
\int_{0}^{\infty} \frac{\sin u \cos u x}{u} d u
$$

Solution: we know the Fourier Integral theorem, the Fourier Integral of a function $f(x)$ is given by

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \omega(t-x) d \omega d t
$$

Using $\omega=u$ we have

$$
\begin{gathered}
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos u(t-x) d u d t \\
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-1}^{1} \cos u(t-x) d t d u \quad \text { since } f(t)=1
\end{gathered}
$$

Now integrating w.r.t. t we have

$$
\begin{gathered}
f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\frac{\sin u(t-x)}{u}\right]_{-1}^{1} d u \\
f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\frac{\sin u(1-x)+\sin u(1+x)}{u}\right] d u
\end{gathered}
$$

Now using $\sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$ and solving it we will get

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin u \cos u x}{u} d u
$$

We can rewrite this

$$
\begin{gathered}
\int_{0}^{\infty} \frac{\sin u \cos u x}{u} d u=\frac{\pi}{2} f(x) \\
\int_{0}^{\infty} \frac{\sin u \cos u x}{u} d u= \begin{cases}\frac{\pi}{2} \times 1=\frac{\pi}{2}, & \text { for } x<1 \\
\frac{\pi}{2} \times 0=0, & \text { for } x>1\end{cases}
\end{gathered}
$$

For $x=1$, which is a point of discontinuity of $f(x)$, value of integral $=\frac{\frac{\pi}{2}+0}{2}=\frac{\pi}{4}$

5.9. FOURIER TRANSFORMS

From the Fourier complex integral we know that

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \omega x} d \omega \int_{-\infty}^{\infty} f(t) e^{i \omega t} d t
$$

We can rewrite the above expression as follows using $\omega=s$

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i s x} d s \int_{-\infty}^{\infty} f(t) e^{i s t} d t=\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i s x} d s\right]\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i s t} d t\right]
$$

Now using $\quad \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i s t} d t=F(s)$ in above equation, we get

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i s x} F(s) d s
$$

Where $F(s)$ is called the Fourier Transform of $f(x)$.
And $f(x)$ is called the Inverse Fourier transform of $F(s)$.
Thus, we obtain the definition of Fourier transform is

$$
\begin{gathered}
F(s)=F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i s t} d t \\
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i s x} . F(s) d s
\end{gathered}
$$

5.10. FOURIER SINE TRANSFORMS

We know that from Fourier sine integral
$f(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin s x d s \int_{0}^{\infty} f(t) \sin s t d t=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sin s x d s\left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin s t d t\right]$
Now putting $F(s)=\sqrt{\frac{2}{\pi} \int_{0}^{\infty} f(t) \sin s t d t}$
We have

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sin s x d s F(s)
$$

In above equation $F(s)$ is called Fourier Sine transform of $f(x)$

$$
F(s)=F_{s}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin s t d t
$$

And $f(x)$ given below is known as inverse Fourier Sine transform of $F(s)$

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(s) \sin s x d s
$$

5.11. FOURIER COSINE TRANSFORM

From Fourier cosine integral we know that

$$
\begin{aligned}
& f(x)=\frac{2}{\pi} \int_{0}^{\infty} \cos \omega x d u \int_{0}^{\infty} f(t) \cos \omega t d t \\
& f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos s x d s\left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos s t d t\right]
\end{aligned}
$$

Now putting $\quad F(s)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos s t d t$

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos s x d s F(s)
$$

In above equation $F(s)$ is called Fourier cosine transform of $f(x)$

$$
F(s)=F_{c}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos s t d t
$$

And $f(x)$ given below is known as inverse Fourier cosine transform of $F(s)$

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos s x F(s) d s
$$

Example 2: Find the Fourier transform of $e^{-a x^{2}}$, where $\mathrm{a}>0$.
Solution : The Fourier transform of $f(x)$:

$$
F\{f(x)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

Hence

$$
\begin{gathered}
F\left\{e^{-a x^{2}}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a x^{2}} e^{i s x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a x^{2}+i s x} d x \\
\Rightarrow F\left\{e^{-a x^{2}}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a x^{2}-\frac{s^{2}}{4 a}+i s x+\frac{s^{2}}{4 a}} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(x \sqrt{a}-\frac{i s}{2 \sqrt{a}}\right)^{2}-\frac{s^{2}}{4 a}} d x \\
\Rightarrow F\left\{e^{-a x^{2}}\right\}=\frac{e^{-\frac{s^{2}}{4 a}}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(x \sqrt{a}-\frac{i s}{2 \sqrt{a}}\right)^{2}} d x
\end{gathered}
$$

Putting $x \sqrt{a}-\frac{i s}{2 \sqrt{a}}=u \Rightarrow d x=\frac{d u}{s^{2}}$ in above expression we get,

$$
\Rightarrow F\left\{e^{-a x^{2}}\right\}=\frac{e^{-\frac{S^{-}}{4 a}}}{\sqrt{2 \pi a}} \int_{-\infty}^{\infty} e^{-u^{2}} d u \quad\left[\operatorname{since} \int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}\right]
$$

$$
\Rightarrow F\left\{e^{-a x^{2}}\right\}=\frac{e^{-\frac{s^{2}}{4 a}}}{\sqrt{2 \pi a}} \sqrt{\pi}=\frac{e^{-\frac{s^{2}}{4 a}}}{\sqrt{2 a}} \quad \text { Ans. }
$$

Example 3: Find the Fourier transform of

$$
f(x)=\left\{\begin{array}{ll}
2 & \text { for }|x|<a \\
0 & \text { for }
\end{array}|x|>a\right.
$$

Solution: We know that the Fourier transform of a function is given by

$$
F\{f(x)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

Using the given value of $f(x)$ we get,

$$
\begin{gathered}
F\{f(x)\}=\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a} 2 e^{i s x} d x=\frac{2}{\sqrt{2 \pi}} \int_{-a}^{a} e^{i s x} d x= \\
F\{f(x)\}=\frac{2}{\sqrt{2 \pi}}\left[\frac{e^{i s x}}{i s}\right]_{-a}^{a}=\frac{2}{\sqrt{2 \pi} i s}\left[e^{i a s}-e^{-i a s}\right]=\frac{4}{\sqrt{2 \pi} s} \frac{\left[e^{i a s}-e^{-i a s}\right]}{2 i} \\
\\
F\{f(x)\}=\frac{4}{\sqrt{2 \pi} s} \sin a s=2 \sqrt{\frac{2}{\pi}} \frac{\sin s a}{s} \quad \text { Ans. }
\end{gathered}
$$

Example 4: Find Fourier Sine transform of $\frac{1}{x}$.
Solution: We have to find the Fourier sine transform of $f(x)=\frac{1}{x}$
We know that from Fourier sine transform

$$
F_{s}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x
$$

Now using the value of $f(x)=\frac{1}{x}$, we get,

$$
F_{s}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin s x d x
$$

$$
\text { now using } s x=t \Rightarrow d x=\frac{d t}{s}
$$

We get

$$
\begin{aligned}
= & \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin t}{t} d t=\sqrt{\frac{2}{\pi}}\left(\frac{\pi}{2}\right) \quad \Rightarrow \operatorname{since} \int_{0}^{\infty} \frac{\sin t}{t} d t=\frac{\pi}{2} \\
& F_{S}[f(x)]=\sqrt{\frac{\pi}{2}} \quad \text { Ans. }
\end{aligned}
$$

Example 5: Find the Fourier Sine Transform of $e^{-a x}$.
Solution: Here, $f(x)=e^{-a x}$.
The Fourier sine transform of $f(x)$:

$$
F_{s}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x
$$

On putting the value of $f(x)$ in (1), we get

$$
F_{S}\left[e^{-a x}\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \sin s x d x
$$

On Integrating by parts, we get

$$
\begin{gathered}
F_{s}\left[e^{-a x}\right]=\sqrt{\frac{2}{\pi}}\left[\frac{e^{-a x}}{a^{2}+s^{2}}[-a \operatorname{sins} x-s \cos s x]\right]_{0}^{\infty} \\
u \operatorname{sing}\left[\int_{0}^{\infty} e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x]\right. \\
=\sqrt{\frac{2}{\pi}}\left[0-\frac{1}{a^{2}+s^{2}}(-s)\right]=\sqrt{\frac{2}{\pi}}\left(\frac{s}{a^{2}+s^{2}}\right) \quad \text { Ans. }
\end{gathered}
$$

Example 6: Find the Fourier Cosine Transform of $f(x)=5 e^{-2 x}+2 e^{-5 x}$
Solution: The Fourier Cosine Transform of $f(x)$ is given by

$$
F_{c}\{f(x)\}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos s x d x
$$

Putting the value of $f(x)$, we get

$$
\begin{gathered}
F_{c}\{f(x)\}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left(5 e^{-2 x}+2 e^{-5 x}\right) \cos s x d x \\
=5 \int_{0}^{\infty} e^{-2 x} \cos s x d x+2 \int_{0}^{\infty} e^{-5 x} \cos s x d x \\
u \operatorname{sing}\left[\int_{0}^{\infty} e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x]\right. \\
=5\left[\frac{e^{-2 x}}{(-2)^{2}+s^{2}}(-2 \cos s x+s \sin s x]_{0}^{\infty}+2\left[\frac{e^{-5 x}}{(-5)^{2}+s^{2}}(-5 \cos s x+s \sin s x]_{0}^{\infty}\right.\right. \\
=5\left[0-\frac{1}{4+s^{2}}(-2)\right]+2\left[0-\frac{1}{25+s^{2}}(-5)\right]=5\left(\frac{2}{s^{2}+4}\right)+2\left(\frac{5}{s^{2}+25}\right) \\
=10\left(\frac{1}{s^{2}+4}+\frac{1}{s^{2}+25}\right)
\end{gathered}
$$

5.12. PROPERTIES OF FOURIER TRANSFORMS

9.12.1 LINEAR PROPERTY: If $F_{1}(s)$ and $F_{2}(s)$ are Fourier transforms of $f_{1}(x)$ and $f_{2}(x)$ respectively then

$$
F\left[a f_{1}(x)+b f_{2}(x)\right]=a F_{1}(s)+b F_{2}(s) \quad \text { where } a \text { and } b \text { are constants. }
$$

Proof: we know from the definition of Fourier transform

$$
F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

We can write

$$
F_{1}(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{1}(x) e^{i s x} d x
$$

And

$$
F_{2}(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{2}(x) e^{i s x} d x
$$

Now

$$
\begin{aligned}
& F\left[a f_{1}(x)+b f_{2}(x)\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[a f_{1}(x)+b f_{2}(x)\right] e^{i s x} d x \\
& \left.\quad=a \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{1}(x) e^{i s x} d x+b \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{2}(x)\right] e^{i s x} d x \\
& \Rightarrow F\left[a f_{1}(x)+b f_{2}(x)\right]=a F_{1}(s)+b F_{2}(s) \quad \text { Proved }
\end{aligned}
$$

5.12.2. CHANGE OF SCALE PROPERTY

We know that Fourier transform equation is given by

$$
F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

Then

$$
F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right)
$$

Proof: we know

$$
F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

$$
\Rightarrow F\{f(a x)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(a x) e^{i s x} d x \quad\left[\text { now put ax }=t \Rightarrow d x=\frac{d t}{a}\right]
$$

We have

$$
\begin{gathered}
F\{f(a x)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i \frac{s}{a} t} \frac{d t}{a}=\quad \frac{1}{a} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i\left(\frac{s}{a}\right) t} d t \\
\Rightarrow F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right) \quad \text { Proved }
\end{gathered}
$$

5.12.3 SHIFTING PROPERTY

The Fourier transform equation is given by

$$
F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

Then

$$
F\{f(x-a)\}=e^{i s a} F(s)
$$

Proof: Given

$$
F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

then

$$
F\{f(x-a)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-a) e^{i s x} d x
$$

$$
P u t(x-a)=u \Rightarrow x=u+a \text { and } d x=d u
$$

We have

$$
\begin{gathered}
F\{f(x-a)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(u) e^{i s(u+a)} d u=e^{i s a} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(u) e^{i s u} d u \\
\Rightarrow F\{f(x-a)\}=e^{i s a} F(s) \quad \text { Proved }
\end{gathered}
$$

5.13. FOURIER TRANSFORM OF DERIVATIVES

As we know from the properties of Fourier Transform

$$
\begin{aligned}
F\left\{f^{n}(x)\right\} & =(-i s)^{n} F(s) \\
F\left(\frac{\partial^{2} f}{d x^{2}}\right) & =(-i s)^{2} F\{f(x)\}=-s^{2} \bar{f}[\text { where } \bar{f} \text { is Forier Transform of } f]
\end{aligned}
$$

If F_{c} and F_{s} are cosine and sine Forier tranform $f(x)$ then

$$
F_{c}\left\{f^{\prime}(x)\right\}=-\sqrt{\frac{2}{\pi}} f(0)+s F_{s}(s)
$$

Proof: From cosine Fourier transform we know that

$$
F_{c}\left[f^{\prime}(x)\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f^{\prime}(x) \cos s x d x=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos s x d\{f(x)\}
$$

Now integrating by parts, we get

$$
\begin{gathered}
=\sqrt{\frac{2}{\pi}}[\cos s x f(x)]_{0}^{\infty}-\sqrt{\frac{2}{\pi}}\left[-s \int_{0}^{\infty} \sin s x f(x) d x\right] \\
=\sqrt{\frac{2}{\pi}}[0-f(0)]+s \sqrt{\frac{2}{\pi}}\left[\int_{0}^{\infty} \sin s x f(x) d x\right] \quad\{\operatorname{assumimg} f(x) \rightarrow 0 \text { as } x \rightarrow \infty\}
\end{gathered}
$$

Hence

$$
F_{c}\left\{f^{\prime}(x)\right\}=-\sqrt{\frac{2}{\pi}} f(0)+s F_{s}(s) \quad \text { where } \sqrt{\frac{2}{\pi}}\left[\int_{0}^{\infty} \sin s x f(x) d x\right]=F_{s}(s)
$$

5.14. FOURIER TRANSFORM OF PARTIAL DERIVATIVE OF A FUNCTION

The Fourier transform of the partial derivatives is given by

$$
F\left[\frac{\partial^{2} u}{\partial^{2} x}\right]=-s^{2} F(u)
$$

Where $F(u)$ is the Fourier transform of u.
The Fourier sine transform of the partial derivatives is given by

$$
F_{S}\left[\frac{\partial^{2} u}{\partial^{2} x}\right]=s(u)_{x=0}-s^{2} F_{s}(u)
$$

Where $F_{S}(u)$ is the Fourier sine transform of u
The Fourier cosine transform of the partial derivatives is given by

$$
F_{c}\left[\frac{\partial^{2} u}{\partial^{2} x}\right]=-\left[\frac{\partial u}{\partial x}\right]_{x=0}-s^{2} F_{c}(u)
$$

Where $F_{c}(u)$ is the Fourier cosine transform of u.

5.15 TERMINAL QUESTIONS

1) Find the Fourier Transform of $f(x)$ if

$$
f(x)=\left\{\begin{array}{l}
x,|x| \leq a \\
0,|x|>a
\end{array}\right.
$$

2) Show that the Fourier Transform of

$$
f(x)= \begin{cases}a-|x| & \text { for }|x|<a \\ 0 & \text { for }|x|>a>0\end{cases}
$$

Is $\sqrt{\frac{2}{\pi}}\left(\frac{1-\cos a s}{s^{2}}\right)$.
Hence show that $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t=\frac{\pi}{2}$
3) Show that the Fourier Transform of

$$
f(x)=\left\{\begin{array}{rr}
\frac{\sqrt{2 \pi}}{2 a} & \text { for }|x| \leq a \\
0 & \text { for }|x|>a
\end{array}\right.
$$

$$
\text { Is } \frac{\sin s a}{s a}
$$

4) Find the Fourier cosine Transform of $e^{-a x}$.
5) Find Fourier transform of

$$
F(x)= \begin{cases} & x^{2}, \\ 0, & |x|<a \\ 0 & \\ & |x|>a\end{cases}
$$

6) Find Fourier Sine Transform of

$$
f(x)=\frac{1}{x\left(x^{2}+a^{2}\right)}
$$

7) Find the Fourier Sine and Cosine Transform of $a e^{-\alpha x}+b e^{-\beta x}, \quad \alpha, \beta>0$ 8)Find $f(x)$ if its Fourier Sine transform is $\frac{s}{1+s^{2}}$
9)Find $f(x)$ if its Fourier Sine Transform is $(2 \pi s)^{\frac{1}{2}}$

5.16. Terminal Questions Answer

1) $\frac{1}{\sqrt{2 \pi}} \frac{2 i}{s^{2}}$
2) $F_{c}\{f(x)\}=\sqrt{\frac{2}{\pi}}\left(\frac{a}{a^{2}+s^{2}}\right)$
3) $\left(\frac{2 a^{2}}{s}-\frac{4}{s^{2}}\right) \sin a s+\frac{4 a}{s^{2}} \cos a s$
4) $\frac{\pi^{s}}{2 a^{2}}\left(1-e^{-a x}\right)$
5) $\frac{a s}{s^{2}+\alpha^{2}}+\frac{b s}{s^{2}+\beta^{2}}, \frac{a \alpha}{s^{2}+\alpha^{2}}+\frac{b \beta}{s^{2}+\beta^{2}}$
6) $\frac{2 \sin ^{2} a x}{\pi^{2} x^{2}}$
7) $\frac{\pi^{2} x^{2}}{x \sqrt{x}}$

THANKS

