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5.1 INTRODUCTION

• The central starting point of Fourier analysis is Fourier series. They 
are infinite series designed to represent general periodic functions in 
terms of simple ones, namely, cosines and sines.

• This trigonometric system is orthogonal, allowing the computation of 
the coefficients of the Fourier series by use of the well-known Euler 
formulas, as shown. Fourier series are very important to the engineer 
and physicist because they allow the solution of linear differential 
equations and partial differential.

• Fourier series are, in a certain sense, more universal than the familiar 
Taylor series in calculus because many discontinuous periodic 
functions that come up in applications can be developed in Fourier 
series but do not have Taylor series expansions.



• The Fourier Transform is a tool that breaks a waveform (a function or 
signal) into an alternate representation, characterized by sine and 
cosines. The Fourier Transform shows that any waveform can be re-
written as the sum of sinusoidal functions.

• The Fourier transform is a mathematical function that decomposes a 
waveform, which is a function of time, into the frequencies that make 
it up. The result produced by the Fourier transform is a complex 
valued function of frequency.

• The absolute value of the Fourier transform represents the frequency 
value present in the original function and its complex argument 
represents the phase offset of the basic sinusoidal in that frequency.



• The Fourier transform is also called a generalization of the Fourier 
series. This term can also be applied to both the frequency domain 
representation and the mathematical function used.

• The Fourier transform helps in extending the Fourier series to non-
periodic functions, which allows viewing any function as a sum of 
simple sinusoids.



5.2 OBJECTIVES

• After studying this chapter we will learn about how Fourier 
transforms is useful many physical applications, such as partial 
differential equations and heat transfer equations. 

• With the use of different properties of Fourier transform along with 
Fourier sine transform and Fourier cosine transform, one can solve 
many important problems of physics with very simple way. 

• Thus we will learn from this unit to use the Fourier transform for 
solving many physical application related partial differential 
equations.



5.3 FOURIER SERIES

• A function f (x) is called a periodic function if f ( x) is defined for all real x, except 
possibly at some points, and if there is some positive number p, called a period of 
f (x)  such that

𝑓 𝑥 + 𝑝 = 𝑓 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

• Familiar periodic functions are the cosine, sine, tangent, and cotangent. Examples 
of functions that are not periodic are  𝑥, 𝑥2, 𝑥3, 𝑒𝑥 , cos ℎ𝑥 𝑒𝑡𝑐. to mention just a 
few.

If f(x) has a period of p then it has also a period of 2p

𝑓 𝑥 + 2𝑝 = 𝑓 𝑥 + 𝑝 + 𝑝 = 𝑓 𝑥 + 𝑝 = 𝑓(𝑥)

Or in general we can write
𝑓 𝑥 + 𝑛𝑝 = 𝑓 𝑥



• A Fourier series is defined as an expansion of a real function or 
representation of a real function in a series of sines and cosines such 
as

𝑓 𝑥 =
𝑎0
2

+ ෍

𝑛=1

∞

𝑎𝑛 cos 𝑛𝑥 + ෍

𝑛=1

∞

𝑏𝑛 sin 𝑛𝑥

Where 𝑎0, 𝑎𝑛, 𝑎𝑛𝑑 𝑏𝑛 are constants, called the Fourier coefficients of 
the series. We see that each term has the period of 2𝜋 Hence if the 
coefficients are such that the series converges, its sum will be a function 
of period 2𝜋.



• The Fourier coefficients of f(x), given by the Euler formulas

𝑎0 =
1

2𝜋
න
−𝜋

𝜋

𝑓 𝑥 𝑑𝑥

𝑎𝑛 =
1

𝜋
න
−𝜋

𝜋

𝑓 𝑥 cos 𝑛𝑥 𝑑𝑥 𝑛 = 1, 2, 3, … .

𝑏𝑛 =
1

𝜋
න
−𝜋

𝜋

𝑓 𝑥 sin 𝑛𝑥 𝑑𝑥 𝑛 = 1, 2, 3, …

The above Fourier series is given for period 2𝜋. The transition from period 
2𝜋 to be period 𝑝 = 2𝐿 is effected by a suitable change of scale, as follows. 
Let 𝑓(𝑥) have period = 2𝐿 . Then we can introduce a new variable v such 
that ,𝑓(𝑥) as a function of v, has period 2𝜋.



• If we set

𝑥 =
𝑝

2𝜋
𝑣 ⇒ 𝑣 =

2𝜋

𝑝
𝑥 ⇒ 𝑣 =

𝜋

𝐿
𝑥

This means 𝑣 = ±𝜋 corresponds to 𝑥 = ±𝐿. This represent f , as function of v has a period of 2𝜋. Hence the 
Fourier series is 

𝑓 𝑣 =
𝑎0
2

+ ෍

𝑛=1

∞

𝑎𝑛 cos 𝑛𝑣 + ෍

𝑛=1

∞

𝑏𝑛 sin 𝑛𝑣

• Now using  𝑣 =
𝜋

𝐿
𝑥 Fourier series for the period of (-L, L) is given by

𝑓 𝑥 =
𝑎0
2

+ ෍

𝑛=1

∞

𝑎𝑛 cos 𝑛
𝜋

𝐿
𝑥 + ෍

𝑛=1

∞

𝑏𝑛 sin 𝑛
𝜋

𝐿
𝑥

This is Fourier series we obtain for a function of f(x) period 2L the Fourier series.

The coefficient is given by 

𝑎0 =
1

𝐿
𝐿−׬
𝐿
𝑓 𝑡 𝑑𝑡,

𝑎𝑛 =
1

𝐿
න
−𝐿

𝐿

𝑓 𝑥 cos
𝑛𝜋𝑥

𝐿
𝑑𝑥,

• 𝑏𝑛 =
1

𝐿
𝐿−׬
𝐿
𝑓 𝑥 sin

𝑛𝜋𝑥

𝐿
𝑑𝑥,



5.4 SOME IMPORTANT RESULTS

• ׬ 𝑒 𝑎𝑥 𝑠𝑖𝑛 𝑏𝑥 𝑑𝑥 =
𝑒𝑎𝑥

𝑎2+𝑏2
(𝑎 𝑠𝑖𝑛 𝑏𝑥 − 𝑏𝑐𝑜𝑠 𝑏𝑥

• ׬ 𝑒 𝑎𝑥 𝑐𝑜𝑠 𝑏𝑥 𝑑𝑥 =
𝑒 𝑎𝑥

𝑎2+𝑏2
(𝑎 𝑐𝑜𝑠 𝑏𝑥 + 𝑏𝑠𝑖𝑛 𝑏𝑥

• 0׬
∞ sin 𝑎𝑥

𝑥
𝑑𝑥 =

𝜋

2

• 0׬
∞
𝑒−𝑥

2
𝑑𝑥 =

𝜋

2

• ∞−׬
∞ sin 𝑚𝑥

(𝑥−𝑏)2+𝑎2 𝑑𝑥 =
𝜋

𝑎
𝑒−𝑎𝑚 𝑠𝑖𝑛 𝑏𝑚 , [𝑚 > 0]



5.5 FOURIER INTEGRAL

• Fourier series are powerful tools for problems involving functions that 
are periodic or are of interest on a finite interval only. 

• Since, of course, many problems involve functions that are 
nonperiodic and are of interest on the whole x-axis, we ask what can 
be done to extend the method of Fourier series to such functions. 
This idea will lead to “Fourier integrals.” 



5.6 FOURIER INTEGRAL THEOREM

Fourier integral theorem states that 𝑓 𝑥 =
1

𝜋
0׬
∞
∞−׬
∞

𝑓 𝑡 cos 𝑢 𝑡 − 𝑥 𝑑𝑡 𝑑𝑢

Proof.  We know that Fourier series of a function 𝑓 (x) in ( -c, c) is given by

𝑓 𝑥 =
𝑎0

2
+ σ𝑛=1

∞ 𝑎𝑛 cos
𝑛𝜋𝑥

𝑐
+ σ𝑛=1

∞ 𝑏𝑛 sin
𝑛𝜋𝑥

𝑐

Where 𝑎0 , 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 are given by

𝑎0 =
1

𝑐
𝑐−׬
𝑐
𝑓 𝑡 𝑑𝑡,

𝑎𝑛 =
1

𝑐
න
−𝑐

𝑐

𝑓 𝑡 cos
𝑛𝜋𝑡

𝑐
𝑑𝑡,

𝑏𝑛 =
1

𝑐
න
−𝑐

𝑐

𝑓 𝑡 sin
𝑛𝜋𝑡

𝑐
𝑑𝑡,

Substituting the values of 𝑎0 , 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 in above equation, we get

𝑓 𝑥 =
1

2𝑐
න
−𝑐

𝑐

𝑓 𝑡 𝑑𝑡 + ෍

𝑛=1

∞
1

𝑐
න
−𝑐

𝑐

𝑓 𝑡 cos
𝑛𝜋𝑡

𝑐
𝑑𝑡 cos

𝑛𝜋𝑥

𝑐
+ ෍

𝑛=1

∞
1

𝑐
න
−𝑐

𝑐

𝑓 𝑡 sin
𝑛𝜋𝑡

𝑐
𝑑𝑡, sin

𝑛𝜋𝑥

𝑐



𝑓 𝑥 =
1

2𝑐
න
−𝑐

𝑐

𝑓 𝑡 𝑑𝑡 + ෍

𝑛=1

∞
1

𝑐
න
−𝑐

𝑐

𝑓 𝑡 cos
𝑛𝜋𝑡

𝑐
cos

𝑛𝜋𝑥

𝑐
+ sin

𝑛𝜋𝑡

𝑐
sin

𝑛𝜋𝑥

𝑐
𝑑𝑡

𝑓 𝑥 =
1

2𝑐
න
−𝑐

𝑐

𝑓 𝑡 𝑑𝑡 + ෍

𝑛=1

∞
1

𝑐
න
−𝑐

𝑐

𝑓 𝑡 cos
𝑛𝜋𝑡

𝑐
−

𝑛𝜋𝑥

𝑐
𝑑𝑡

𝑓 𝑥 =
1

2𝑐
න
−𝑐

𝑐

𝑓 𝑡 𝑑𝑡 + ෍

𝑛=1

∞
1

𝑐
න
−𝑐

𝑐

𝑓 𝑡 cos
𝑛𝜋

𝑐
𝑡 − 𝑥 𝑑𝑡

𝑓 𝑥 =
1

2𝑐
න
−𝑐

𝑐

𝑓 𝑡 1 + 2෍

𝑛=1

∞

cos
𝑛𝜋

𝑐
𝑡 − 𝑥 𝑑𝑡

Since cosine functions are even functions i.e., cos(−𝜃) = cos 𝜃 the expression

1 + 2෍

𝑛=1

∞

cos
𝑛𝜋

𝑐
𝑡 − 𝑥 = ෍

𝑛=−∞

∞

cos
𝑛𝜋

𝑐
𝑡 − 𝑥



We now let the parameter c approach infinity, transforming the finite interval [-c, c] into the 

infinite interval (-∞ to +∞). We set 

𝑛𝜋

𝑐
= 𝜔, 𝑎𝑛𝑑 

𝜋

𝑐
= 𝑑𝜔         𝑤𝑖𝑡ℎ 𝑐 → ∞ 

Then we have  

𝑓(𝑥) =
1

2𝜋
න 𝑓(𝑡) 

∞

−∞

  න 𝑑ω cos 𝜔(𝑡 − 𝑥)
∞

−∞

 𝑑𝑡 

       On simplifying          

𝑓(𝑥) =
1

𝜋
න න  𝑓(𝑡)𝑐𝑜𝑠 𝜔(𝑡 − 𝑥)

∞

−∞

∞

0

𝑑𝜔 𝑑𝑡                             𝑃𝑟𝑜𝑣𝑒𝑑 

      



5.7. FOURIER SINE AND COSINE INTEGRALS

𝑓 𝑥 =
2

𝜋
׬
0

∞
𝑠𝑖𝑛 𝜔𝑥 𝑑𝑢 ׬

0

∞
𝑓 𝑡 𝑠𝑖𝑛 𝜔𝑡 𝑑𝑡 (Fourier Sine Integrals)

𝑓 𝑥 =
2

𝜋
0׬
∞
𝑐𝑜𝑠 𝜔𝑥 𝑑𝑢 0׬

∞
𝑓 𝑡 𝑐𝑜𝑠 𝜔𝑡 𝑑𝑡 (Fourier Cosine Integrals)

Proof: We can write 
cos 𝜔 𝑡 − 𝑥 = cos 𝜔𝑡 − 𝜔𝑥 = cos𝜔𝑡 cos𝜔𝑥 + sin𝜔𝑡 sin𝜔𝑥

Using this expansion in Fourier integral theorem, we have 

𝑓 𝑥 =
1

𝜋
න
0

∞

න
−∞

∞

cos 𝜔 𝑡 − 𝑥 𝑑ω 𝑑𝑡

⇒ 𝑓(𝑥) =
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡)(𝑐𝑜𝑠 𝜔𝑡 cos𝜔𝑥 + sin𝜔𝑡 sin𝜔𝑥)𝑑ω 𝑑𝑡

⇒ 𝑓(𝑥) =
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡)(𝑐𝑜𝑠 𝜔𝑡 cos𝜔𝑥 𝑑ω 𝑑𝑡 +
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡) sin𝜔𝑡 sin𝜔𝑥 𝑑ω 𝑑𝑡



Now to solve the above equation, we have two different cases, using the following conditions

න
−𝑎

𝑎

𝑓 𝑥 𝑑𝑥 = 0 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

And 

න
−𝑎

𝑎

𝑓 𝑥 𝑑𝑥 = 2න
0

𝑎

𝑓 𝑥 𝑑𝑥 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Case I: when f(t) is even function: this means 

⇒ 𝑓 𝑡 sin𝜔𝑡 𝑖𝑠 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑
𝑓 𝑡 cos𝜔𝑡 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Hence
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡) sin𝜔𝑡 sin𝜔𝑥 𝑑ω 𝑑𝑡 = 0

And 

⇒ 𝑓(𝑥) =
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡)(𝑐𝑜𝑠𝜔𝑡 cos𝜔𝑥 𝑑ω 𝑑𝑡 =
2

𝜋
න
0

∞

cos𝜔𝑥 𝑑ωන
−∞

∞

𝑓(𝑡)𝑐𝑜𝑠𝜔𝑡 𝑑𝑡

𝑓 𝑥 =
2

𝜋
න
0

∞

𝑐𝑜𝑠 𝜔𝑥 𝑑𝑢 න
0

∞

𝑓 𝑡 𝑐𝑜𝑠 𝜔𝑡 𝑑𝑡

This is known as Fourier cosine integral.



Case II: If  f(t) is odd function: this means 
⇒ 𝑓 𝑡 sin𝜔𝑡 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑

𝑓 𝑡 cos𝜔𝑡 𝑖𝑠 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Hence
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡) cos𝜔𝑡 cos𝜔𝑥 𝑑ω 𝑑𝑡 = 0

And 
⇒ 𝑓(𝑥)

=
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡)𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛𝜔𝑥 𝑑𝜔 𝑑𝑡 =
2

𝜋
න
0

∞

𝑠𝑖𝑛 𝜔𝑥 𝑑𝜔න
−∞

∞

𝑓(𝑡)𝑠𝑖𝑛𝜔𝑡 𝑑𝑡

𝑓 𝑥 =
2

𝜋
න
0

∞

𝑠𝑖𝑛𝜔𝑥 𝑑𝑢 න
0

∞

𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡 𝑑𝑡

This is known as Fourier sine integral.



5.8. FOURIER’S COMPLEX INTEGRALS

𝑓(𝑥) =
1

2𝜋
න 𝑒−𝑖𝜔𝑥 𝑑𝜔

∞

−∞

න 𝑓(𝑡)
∞

−∞

𝑒𝑖𝜔𝑡𝑑𝑡      

We know from Fourier integral theorem  

𝑓(𝑥) =
1

2𝜋
න න  𝑓(𝑡)𝑐𝑜𝑠 𝜔(𝑡 − 𝑥)

∞

−∞

∞

−∞

𝑑𝜔 𝑑𝑡                              

Now adding 

𝑓(𝑥) =
𝑖

2𝜋
න 𝑓(𝑡)𝑑𝑡න  𝑠𝑖𝑛 𝜔(𝑡 − 𝑥)

∞

−∞

∞

−∞

𝑑𝜔 = 0                               

Since  

 න 𝑠𝑖𝑛
∞

−∞

 𝜔(𝑡 − 𝑥)𝑑𝜔 = 0                   𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Hence  

𝑓(𝑥) =
1

2𝜋
න න  𝑓(𝑡)𝑐𝑜𝑠 𝜔(𝑡 − 𝑥)

∞

−∞

∞

−∞

𝑑𝜔 𝑑𝑡 +
𝑖

2𝜋
න 𝑓(𝑡)𝑑𝑡න  𝑠𝑖𝑛 𝜔(𝑡 − 𝑥)

∞

−∞

∞

−∞

𝑑𝜔       

𝑓(𝑥) =
1

2𝜋
න 𝑓(𝑡)

∞

−∞

𝑑𝑡  න  𝑐𝑜𝑠 𝜔(𝑡 − 𝑥) + 𝑖 𝑠𝑖𝑛 𝜔(𝑡 − 𝑥)
∞

−∞

     𝑑𝜔   

𝑓(𝑥) =
1

2𝜋
׬ 𝑓(𝑡)
∞

−∞
𝑑𝑡 ׬ 𝑒𝑖𝜔(𝑡−𝑥)∞

−∞
     𝑑𝜔   

 

 

 

This relation is known as Fourier’s complex Integral. 



Example 1. Express the following function

𝑓 𝑥 =  
1 𝑤ℎ𝑒𝑛 𝑥 ≤ 1
0 𝑤ℎ𝑒𝑛 𝑥 > 1

as a Fourier integral. Hence evaluate 

න
0

∞ sin 𝑢 cos 𝑢𝑥

𝑢
𝑑𝑢

Solution: we know the Fourier Integral theorem, the Fourier Integral of a function 𝑓 𝑥 is 
given by

𝑓 𝑥 =
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡)𝑐𝑜𝑠 𝜔 𝑡 − 𝑥 𝑑𝜔 𝑑𝑡

Using 𝜔 = 𝑢 we have

𝑓 𝑥 =
1

𝜋
න
0

∞

න
−∞

∞

𝑓(𝑡)𝑐𝑜𝑠 𝑢 𝑡 − 𝑥 𝑑𝑢 𝑑𝑡

𝑓 𝑥 =
1

𝜋
න
0

∞

න
−1

1

𝑐𝑜𝑠 𝑢 𝑡 − 𝑥 𝑑𝑡 𝑑𝑢 𝑠𝑖𝑛𝑐𝑒 𝑓 𝑡 = 1



Now integrating w.r.t. t we have

𝑓 𝑥 =
1

𝜋
න
0

∞ sin 𝑢(𝑡 − 𝑥)

𝑢
−1

1

𝑑𝑢

𝑓 𝑥 =
1

𝜋
න
0

∞ sin 𝑢 1 − 𝑥 + sin 𝑢 1 + 𝑥

𝑢
𝑑𝑢

Now using sin 𝐶 + 𝑠𝑖𝑛𝐷 = 2 𝑠𝑖𝑛
𝐶+𝐷

2
𝑐𝑜𝑠

𝐶−𝐷

2
and solving it we will get 

𝑓 𝑥 =
2

𝜋
න
0

∞ sin 𝑢 cos 𝑢𝑥

𝑢
𝑑𝑢

We can rewrite this 

න
0

∞ sin 𝑢 cos 𝑢𝑥

𝑢
𝑑𝑢 =

𝜋

2
𝑓(𝑥)

න
0

∞ sin 𝑢 cos 𝑢𝑥

𝑢
𝑑𝑢 =

𝜋

2
× 1 =

𝜋

2
, 𝑓𝑜𝑟 𝑥 < 1

𝜋

2
× 0 = 0, 𝑓𝑜𝑟 𝑥 > 1

For x=1, which is a point of discontinuity of  f(x), value of integral =
𝜋

2
+0

2
=

𝜋

4



5.9.FOURIER TRANSFORMS

From the Fourier complex integral we know that 

𝑓(𝑥) =
1

2𝜋
න 𝑒−𝑖𝜔𝑥𝑑𝜔

∞

−∞

න 𝑓(𝑡)
∞

−∞

𝑒𝑖𝜔𝑡𝑑𝑡      

 

We can rewrite the above expression as follows using 𝜔 = 𝑠 

                                     

𝑓(𝑥) =
1

2𝜋
න 𝑒−𝑖𝑠𝑥𝑑𝑠

∞

−∞

න 𝑓(𝑡)
∞

−∞

𝑒𝑖𝑠𝑡𝑑𝑡 =    
1

 2𝜋
න 𝑒−𝑖𝑠𝑥𝑑𝑠

∞

−∞

  
1

 2𝜋
න 𝑓(𝑡)

∞

−∞

𝑒𝑖𝑠𝑡𝑑𝑡     



Now using       
1

 2𝜋
׬ 𝑓(𝑡)
∞

−∞
𝑒𝑖𝑠𝑡𝑑𝑡 = 𝐹(𝑠) in above equation, we get 

𝑓(𝑥) =
1

 2𝜋
න 𝑒−𝑖𝑠𝑥

∞

−∞

𝐹(𝑠)𝑑𝑠    

Where  𝐹(𝑠) is called the Fourier Transform of 𝑓(𝑥). 

And  𝑓(𝑥) is called the Inverse Fourier transform of 𝐹(𝑠). 

 Thus , we obtain the definition of Fourier transform is  

          

             

        𝑭(𝒔) = 𝑭[𝒇(𝒙)] =  
𝟏

 𝟐𝝅
׬ 𝒇(𝒕)𝒆𝒊𝒔𝒕𝒅𝒕
∞

−∞
  

        

         𝒇(𝒙) =  
𝟏

 𝟐𝝅
׬ 𝒆−𝒊𝒔𝒙. 𝑭(𝒔)𝒅𝒔
∞

−∞
 

 



5.10. FOURIER SINE TRANSFORMS

We know that from Fourier sine integral

𝑓 𝑥 =
2

𝜋
0׬
∞
sin 𝑠𝑥 𝑑𝑠 0׬

∞
𝑓 𝑡 sin 𝑠𝑡 𝑑𝑡 =

2

𝜋
0׬
∞
sin 𝑠𝑥 𝑑𝑠

2

𝜋
0׬
∞
𝑓 𝑡 sin 𝑠𝑡 𝑑𝑡

Now putting  𝐹 𝑠 =
2

𝜋
0׬
∞
𝑓 𝑡 sin 𝑠𝑡 𝑑𝑡

We have

𝑓 𝑥 =
2

𝜋
0׬
∞
sin 𝑠𝑥 𝑑𝑠 𝐹(𝑠)

In above equation  𝐹(𝑠) is called Fourier Sine transform of  𝑓(𝑥)

𝑭 𝒔 = 𝑭𝒔 𝒇(𝒙) =
𝟐

𝝅
න
𝟎

∞

𝒇 𝒕 𝐬𝐢𝐧 𝒔𝒕 𝒅𝒕

And 𝑓(𝑥) given below is known as inverse Fourier Sine transform of  𝐹(𝑠)

𝒇 𝒙 =
𝟐

𝝅
න
𝟎

∞

𝑭 𝒔 𝐬𝐢𝐧 𝒔𝒙 𝒅𝒔



5.11. FOURIER COSINE TRANSFORM

From Fourier cosine integral we know that

𝑓 𝑥 =
2

𝜋
න
0

∞

𝑐𝑜𝑠 𝜔𝑥 𝑑𝑢 න
0

∞

𝑓 𝑡 𝑐𝑜𝑠 𝜔𝑡 𝑑𝑡

𝑓 𝑥 =
2

𝜋
׬
0

∞
cos 𝑠𝑥 𝑑𝑠

2

𝜋
׬
0

∞
𝑓 𝑡 cos 𝑠𝑡 𝑑𝑡

Now putting   𝐹 𝑠 =
2

𝜋
׬
0

∞
𝑓 𝑡 cos 𝑠𝑡 𝑑𝑡

𝑓 𝑥 =
2

𝜋
0׬
∞
cos 𝑠𝑥 𝑑𝑠 𝐹(𝑠)

In above equation  𝐹(𝑠) is called Fourier cosine transform of  𝑓(𝑥)

𝑭 𝒔 = 𝑭𝒄 𝒇(𝒙) =
𝟐

𝝅
𝟎׬
∞
𝒇 𝒕 𝐜𝐨𝐬 𝒔𝒕 𝒅𝒕

And 𝑓(𝑥) given below is known as inverse Fourier cosine transform of  𝐹(𝑠)

𝒇 𝒙 =
𝟐

𝝅
𝟎׬
∞
𝐜𝐨𝐬 𝒔𝒙 𝑭 𝒔 𝒅𝒔



Example 2: Find the Fourier transform of  𝑒−𝑎𝑥
2

, where a>0.

Solution : The Fourier transform of f(x):

𝐹 𝑓(𝑥) =
1

2𝜋
∞−׬
∞

𝑓(𝑥)𝑒𝑖𝑠𝑥 𝑑𝑥

Hence 

𝐹 𝑒−𝑎𝑥
2

= 
1

2𝜋
∞−׬
∞

𝑒−𝑎𝑥
2
𝑒𝑖𝑠𝑥 𝑑𝑥 =

1

2𝜋
∞−׬
∞

𝑒−𝑎𝑥
2+𝑖𝑠𝑥𝑑𝑥

⇒ 𝐹 𝑒−𝑎𝑥
2

=
1

2𝜋
න
−∞

∞

𝑒−𝑎𝑥
2−

𝑠2

4𝑎+𝑖𝑠𝑥+
𝑠2

4𝑎 𝑑𝑥 =
1

2𝜋
න
−∞

∞

𝑒
− 𝑥 𝑎−

𝑖𝑠
2 𝑎

2

−
𝑠2

4𝑎 𝑑𝑥

⇒ 𝐹 𝑒−𝑎𝑥
2

=
𝑒−

𝑠2

4𝑎

2𝜋
න
−∞

∞

𝑒
− 𝑥 𝑎−

𝑖𝑠
2 𝑎

2

𝑑𝑥

𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑥 𝑎 −
𝑖𝑠

2 𝑎
= 𝑢 ⇒ 𝑑𝑥 =

𝑑𝑢

𝑎
in above expression we get,

⇒ 𝐹 𝑒−𝑎𝑥
2

=
𝑒−

𝑠2

4𝑎

2𝜋𝑎
න
−∞

∞

𝑒−𝑢
2
𝑑𝑢 𝑠𝑖𝑛𝑐𝑒න

−∞

∞

𝑒−𝑥
2
𝑑𝑥 = 𝜋

⇒ 𝐹 𝑒−𝑎𝑥
2

=
𝑒
−
𝑠2

4𝑎

2𝜋𝑎
𝜋 =

𝑒
−
𝑠2

4𝑎

2𝑎
𝐴𝑛𝑠.



Example 3: Find the Fourier transform of

𝑓 𝑥 =  
2 𝑓𝑜𝑟 𝑥 < 𝑎

0 𝑓𝑜𝑟 𝑥 > 𝑎

Solution: We know that the Fourier transform of a function is given by

𝐹 𝑓(𝑥) =
1

2𝜋
න
−∞

∞

𝑓(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

Using the given value of f(x) we get,

𝐹 𝑓(𝑥) =
1

2𝜋
න
−𝑎

𝑎

2𝑒𝑖𝑠𝑥𝑑𝑥 =
2

2𝜋
න
−𝑎

𝑎

𝑒𝑖𝑠𝑥𝑑𝑥 =

𝐹 𝑓(𝑥) =
2

2𝜋

𝑒𝑖𝑠𝑥

𝑖𝑠
−𝑎

𝑎

=
2

2𝜋 𝑖𝑠
𝑒𝑖𝑎𝑠 − 𝑒−𝑖𝑎𝑠 =

4

2𝜋 𝑠

𝑒𝑖𝑎𝑠 − 𝑒−𝑖𝑎𝑠

2𝑖

𝐹 𝑓(𝑥) =
4

2𝜋 𝑠
sin 𝑎𝑠 =2

2

𝜋

sin 𝑠𝑎

𝑠
𝐴𝑛𝑠.



Example 4: Find Fourier Sine transform of  
1

𝑥
.

Solution: We have to find the Fourier sine transform of   𝑓 𝑥 =
1

𝑥

We know that from Fourier sine transform

𝐹𝑠 𝑓(𝑥) =
2

𝜋
න
0

∞

𝑓 𝑥 sin 𝑠𝑥 𝑑𝑥

Now using the value of 𝑓 𝑥 =
1

𝑥
, we get,

𝐹𝑠 𝑓(𝑥) =
2

𝜋
׬
0

∞ 1

𝑥
sin 𝑠𝑥 𝑑𝑥

𝑛𝑜𝑤 𝑢𝑠𝑖𝑛𝑔 𝑠𝑥 = 𝑡 ⇒ 𝑑𝑥 =
𝑑𝑡

𝑠

We get                           =
2

𝜋
0׬
∞ sin 𝑡

𝑡
𝑑𝑡 =

2

𝜋

𝜋

2
⇒ 𝑠𝑖𝑛𝑐𝑒 0׬

∞ sin 𝑡

𝑡
𝑑𝑡 =

𝜋

2

Hence                                     𝐹𝑠 𝑓(𝑥) =
𝜋

2
𝐴𝑛𝑠.



Example 5: Find the Fourier Sine Transform of  𝑒− 𝑎𝑥.

Solution:  Here,  𝑓 𝑥 = 𝑒− 𝑎𝑥.

The Fourier sine transform of  𝑓 𝑥 :

𝐹𝑠 𝑓(𝑥) =
2

𝜋
0׬
∞
𝑓 𝑥 sin 𝑠𝑥 𝑑𝑥

On putting the value of  𝑓 𝑥 in (1), we get

𝐹𝑠 𝑒− 𝑎𝑥 =
2

𝜋
0׬
∞
𝑒− 𝑎𝑥sin 𝑠𝑥 𝑑𝑥

On Integrating by parts, we get

𝐹𝑠 𝑒− 𝑎𝑥 =
2

𝜋

𝑒− 𝑎𝑥

𝑎2 + 𝑠2
−𝑎 𝑠𝑖𝑛𝑠𝑥 − 𝑠 𝑐𝑜𝑠 𝑠𝑥

0

∞

𝑢𝑠𝑖𝑛𝑔 න
0

∞

𝑒 𝑎𝑥 sin 𝑏𝑥 𝑑𝑥 =
𝑒 𝑎𝑥

𝑎2 + 𝑏2
(𝑎 sin 𝑏𝑥 − 𝑏𝑐𝑜𝑠 𝑏𝑥

=
2

𝜋
0 −

1

𝑎2+𝑠2
(−𝑠) =

2

𝜋

𝑠

𝑎2+𝑠2
𝐴𝑛𝑠.



Example 6: Find the Fourier Cosine Transform of  𝑓 𝑥 = 5𝑒−2𝑥 + 2𝑒−5𝑥

Solution: The Fourier Cosine Transform of  𝑓 𝑥 is given by

𝐹𝑐 𝑓 𝑥 =
2

𝜋
0׬
∞
𝑓 𝑥 cos 𝑠𝑥 𝑑𝑥

Putting the value of  𝑓 𝑥 ,  we get

𝐹𝑐 𝑓 𝑥 =
2

𝜋
න
0

∞

5𝑒−2𝑥 + 2𝑒−5𝑥 cos 𝑠𝑥 𝑑𝑥

= 0׬5
∞
𝑒−2𝑥 cos 𝑠𝑥 𝑑𝑥 + 0׬2

∞
𝑒−5𝑥 cos 𝑠𝑥 𝑑𝑥

𝑢𝑠𝑖𝑛𝑔 න
0

∞

𝑒 𝑎𝑥 𝑐𝑜𝑠 𝑏𝑥 𝑑𝑥 =
𝑒 𝑎𝑥

𝑎2 + 𝑏2
(𝑎 𝑐𝑜𝑠 𝑏𝑥 + 𝑏sin 𝑏𝑥

= 5
𝑒−2𝑥

(−2)2+𝑠2
(−2 cos 𝑠𝑥 + 𝑠 sin 𝑠𝑥

0

∞

+ 2
𝑒−5𝑥

(−5)2+𝑠2
(−5 cos 𝑠𝑥 + 𝑠 sin 𝑠𝑥

0

∞

= 5 0 −
1

4+𝑠2
(−2) + 2 0 −

1

25+𝑠2
(−5) = 5

2

𝑠2+4
+ 2

5

𝑠2+25

= 10
1

𝑠2+4
+

1

𝑠2+25
𝐴𝑛𝑠.



5.12. PROPERTIES OF FOURIER TRANSFORMS

9.12.1  LINEAR PROPERTY: If  𝐹1(𝑠) and 𝐹2(𝑠) are Fourier transforms of 

𝑓1(𝑥) and 𝑓2(𝑥) respectively then 

𝐹[𝑎𝑓1(𝑥) + 𝑏 𝑓2(𝑥)] = 𝑎 𝐹1(𝑠) + 𝑏 𝐹2(𝑠)                𝑤ℎ𝑒𝑟𝑒 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠.  

Proof: we know from the definition of Fourier transform 

        𝐹(𝑠) =
1

 2𝜋
න 𝑓(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

 

We can write  

        𝐹1(𝑠) =
1

 2𝜋
න 𝑓1(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

 

And  

        𝐹2(𝑠) =
1

 2𝜋
න 𝑓2(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

 

Now 

𝐹[𝑎𝑓1(𝑥) + 𝑏 𝑓2(𝑥)] =
1

 2𝜋
න [𝑎𝑓1(𝑥) + 𝑏 𝑓2(𝑥)]𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

  

= 𝑎
1

 2𝜋
න 𝑓1(𝑥)𝑒

𝑖𝑠𝑥𝑑𝑥 + 𝑏
1

 2𝜋
න  𝑓2(𝑥)]𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

∞

−∞

 

⇒ 𝐹[𝑎𝑓1(𝑥) + 𝑏 𝑓2(𝑥)] = 𝑎 𝐹1(𝑠) + 𝑏 𝐹2(𝑠)              𝑃𝑟𝑜𝑣𝑒𝑑 



5.12.2. CHANGE OF SCALE PROPERTY
We know that Fourier transform equation is given by

𝐹 𝑠 =
1

2𝜋
න
−∞

∞

𝑓(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

Then

𝐹{𝑓 𝑎𝑥 } =
1

𝑎
𝐹

𝑠

𝑎
Proof: we know

𝐹 𝑠 =
1

2𝜋
න
−∞

∞

𝑓(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

⇒ 𝐹 𝑓 𝑎𝑥 =
1

2𝜋
න
−∞

∞

𝑓 𝑎𝑥 𝑒𝑖𝑠𝑥𝑑𝑥 𝑛𝑜𝑤 𝑝𝑢𝑡 𝑎𝑥 = 𝑡 ⇒ 𝑑𝑥 =
𝑑𝑡

𝑎

We have

𝐹 𝑓 𝑎𝑥 =
1

2𝜋
න
−∞

∞

𝑓 𝑡 𝑒𝑖
𝑠
𝑎𝑡

𝑑𝑡

𝑎
=

1

𝑎

1

2𝜋
න
−∞

∞

𝑓 𝑡 𝑒
𝑖
𝑠
𝑎 𝑡

𝑑𝑡

⇒ 𝐹 𝑓 𝑎𝑥 =
1

𝑎
𝐹

𝑠

𝑎
𝑃𝑟𝑜𝑣𝑒𝑑



5.12.3 SHIFTING PROPERTY
The  Fourier transform equation is given by 

        𝐹(𝑠) =
1

 2𝜋
න 𝑓(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

 

Then  

        𝐹{𝑓(𝑥 − 𝑎)} = 𝑒𝑖𝑠𝑎  𝐹(𝑠) 

Proof: Given 

        𝐹(𝑠) =
1

 2𝜋
න 𝑓(𝑥)𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

 

then 

        𝐹{𝑓(𝑥 − 𝑎)} =
1

 2𝜋
න 𝑓(𝑥 − 𝑎)𝑒𝑖𝑠𝑥𝑑𝑥

∞

−∞

 

        𝑃𝑢𝑡 (𝑥 − 𝑎) = 𝑢 ⇒ 𝑥 = 𝑢 + 𝑎  𝑎𝑛𝑑 𝑑𝑥 = 𝑑𝑢 

We have 

        𝐹{𝑓(𝑥 − 𝑎)} =
1

 2𝜋
න 𝑓(𝑢)𝑒𝑖𝑠(𝑢+𝑎)𝑑𝑢 =

∞

−∞

𝑒𝑖𝑠𝑎  
1

 2𝜋
න 𝑓(𝑢)𝑒𝑖𝑠𝑢𝑑𝑢 

∞

−∞

 

        ⇒ 𝐹{𝑓(𝑥 − 𝑎)} = 𝑒𝑖𝑠𝑎  𝐹(𝑠)                              𝑃𝑟𝑜𝑣𝑒𝑑 



5.13. FOURIER TRANSFORM OF DERIVATIVES

As we know from the properties of Fourier Transform  
𝐹 𝑓𝑛(𝑥) = (−𝑖 𝑠)𝑛 𝐹 𝑠

𝐹
𝜕2𝑓

𝑑𝑥2
= −𝑖 𝑠 2 𝐹 𝑓 𝑥 = −𝑠2ഥ𝑓 𝑤ℎ𝑒𝑟𝑒 ഥ𝑓 𝑖𝑠 𝐹𝑜𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑓

𝐼𝑓 𝐹𝑐 𝑎𝑛𝑑 𝐹𝑠 𝑎𝑟𝑒 𝑐𝑜𝑠𝑖𝑛𝑒 𝑎𝑛𝑑 𝑠𝑖𝑛𝑒 𝐹𝑜𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚 𝑓 𝑥 𝑡ℎ𝑒𝑛

𝐹𝑐 𝑓′(𝑥) = −
2

𝜋
𝑓 0 + 𝑠𝐹𝑠(𝑠)

Proof: From cosine Fourier transform we know that

𝐹𝑐 𝑓′(𝑥) =
2

𝜋
න
0

∞

𝑓′ 𝑥 cos 𝑠𝑥 𝑑𝑥 =
2

𝜋
න
0

∞

cos 𝑠𝑥 𝑑{𝑓 𝑥 }



Now integrating by parts, we get

=
2

𝜋
[cos 𝑠𝑥 𝑓(𝑥)]0

∞ −
2

𝜋
−𝑠න

0

∞

𝑠𝑖𝑛 𝑠𝑥 𝑓 𝑥 𝑑𝑥

=
2

𝜋
0 − 𝑓(0) + 𝑠

2

𝜋
න
0

∞

𝑠𝑖𝑛 𝑠𝑥 𝑓 𝑥 𝑑𝑥 {𝑎𝑠𝑠𝑢𝑚𝑖𝑚𝑔 𝑓 𝑥 → 0 𝑎𝑠 𝑥 → ∞}

Hence

𝐹𝑐 𝑓′(𝑥) = −
2

𝜋
𝑓 0 + 𝑠𝐹𝑠 𝑠 𝑤ℎ𝑒𝑟𝑒

2

𝜋
න
0

∞

𝑠𝑖𝑛 𝑠𝑥 𝑓 𝑥 𝑑𝑥 = 𝐹𝑠(𝑠)



5.14. FOURIER TRANSFORM OF
PARTIAL         DERIVATIVE OF A FUNCTION

The Fourier transform of the partial derivatives is given by

𝐹
𝜕2𝑢

𝜕2𝑥
= −𝑠2 𝐹 𝑢

Where  𝐹 𝑢 is the Fourier transform of 𝑢.

The Fourier sine transform of the partial derivatives is given by

𝐹𝑠
𝜕2𝑢

𝜕2𝑥
= 𝑠(𝑢)𝑥=0 − 𝑠2 𝐹𝑠 𝑢

Where 𝐹𝑠 𝑢 is the Fourier sine transform of  𝑢

The Fourier cosine transform of the partial derivatives is given by

𝐹𝑐
𝜕2𝑢

𝜕2𝑥
= −

𝜕𝑢

𝜕𝑥
𝑥=0

− 𝑠2 𝐹𝑐 𝑢

Where 𝐹𝑐 𝑢 is the Fourier cosine transform of  𝑢.



5.15 TERMINAL QUESTIONS

1) Find the Fourier Transform of  𝑓(𝑥) if

𝑓 𝑥 =  
𝑥, 𝑥 ≤ 𝑎
0, 𝑥 > 𝑎

2) Show that the Fourier Transform of

𝑓 𝑥 =  
𝑎 − 𝑥 𝑓𝑜𝑟 𝑥 < 𝑎

0 𝑓𝑜𝑟 𝑥 > 𝑎 > 0

Is 
2

𝜋

1−cos 𝑎𝑠

𝑠2
.

Hence show that 0׬
∞ 𝑠𝑖𝑛𝑡

𝑡

2
𝑑𝑡 =

𝜋

2

3) Show that the Fourier Transform of 

𝑓 𝑥 = ൞
2𝜋

2𝑎
𝑓𝑜𝑟 𝑥 ≤ 𝑎

0 𝑓𝑜𝑟 𝑥 > 𝑎

Is 
sin 𝑠𝑎

𝑠𝑎



4) Find the Fourier cosine Transform of  𝑒− 𝑎𝑥.

5) Find Fourier transform of 

𝐹 𝑥 = ൜
𝑥2, 𝑥 < 𝑎

0, 𝑥 > 𝑎

6) Find Fourier Sine Transform of 

𝑓 𝑥 =
1

𝑥 𝑥2 + 𝑎2

7) Find the Fourier Sine and Cosine Transform of 𝑎𝑒−𝛼𝑥 + 𝑏𝑒−𝛽𝑥 , 𝛼, 𝛽 > 0

8)Find f(x)  if its Fourier Sine transform is 
𝑠

1+𝑠2

9)Find f(x) if its Fourier Sine Transform is 2𝜋𝑠
1

2



5.16. Terminal Questions Answer

1) 
1

2𝜋

2𝑖

𝑠2

4) 𝐹𝑐 𝑓 𝑥 =
2

𝜋

𝑎

𝑎2+𝑠2

5) 
2𝑎2

𝑠
−

4

𝑠2
sin 𝑎𝑠 +

4𝑎

𝑠2
cos 𝑎𝑠

6) 
𝜋

2𝑎2 (1 − 𝑒−𝑎𝑥)

7) 
𝑎𝑠

𝑠2+𝛼2 +
𝑏𝑠

𝑠2+𝛽2 ,
𝑎𝛼

𝑠2+𝛼2 +
𝑏𝛽

𝑠2+𝛽2

8) 
2𝑠𝑖𝑛2 𝑎𝑥

𝜋2𝑥2

9) 
1

𝑥 𝑥



THANKS


